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Optimal Search Performance in Unstructured
Peer-to-Peer Networks With Clustered Demands
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Abstract— This paper derives the optimal search time and the
optimal search cost that can be achieved in unstructured peer-to-
peer networks when the demand pattern exhibits clustering (i.e.
file popularities vary across the set of nodes in the network). Clus-
tering in file popularity patterns is evident from measurements
on deployed peer-to-peer file sharing networks. In this paper, we
provide mechanisms for modeling clustering in file popularity
distributions and the consequent non-uniform distribution of file
replicas. We derive relations that show the effect of the number
of replicas of a file on the search time and on the search cost
for a search for that file for the clustered demands case in such
networks for both random walk and flooding search mechanisms.
The derived relations are used to obtain the optimal search
performance for the case of flooding search mechanisms. The
potential performance benefit that clustering in demand patterns
affords is captured by our results. Interestingly, the performance
gains are shown to be independent of whether the search network
topology reflects the clustering in file popularity (the optimal file
replica distribution to obtain these performance gains, however,
does depend on the search network topology).

Index Terms— Clustered demands, flooding, optimal search
cost, optimal search time, peer-to-peer networks, random walk.

I. INTRODUCTION

PEER-TO-PEER networks are loosely organized networks
of autonomous entities (user nodes or “peers”) which

make their resources available to other peers. Since each
new peer brings additional resources, these networks are fully
scalable provided that the resources one offers can be found by
the peers who need those resources. Thus, finding the desired
resource is a critical issue in peer-to-peer networks. Keeping
a centralized index of the resources each peer is offering is
an approach that has scalability issues and a single point of
failure. Alternatively, a direct approach for finding the desired
resource is to have the peer wanting a resource to query other
nodes to find a node that has that resource. Since a node cannot
realistically keep the addresses of all other peers, an overlay
network is constructed where each node keeps addresses of a
few other peers (called its neighbors) through whom it reaches
the rest of the peers. Peer-to-peer networks which allow the
neighbors of a peer to be chosen randomly (e.g. Gnutella
[9]) are referred to as unstructured peer-to-peer networks to
distinguish them from structured networks (e.g. Chord [27])
where peers are assigned unique node IDs and a peer’s set
of neighbors is derived from its node ID. These structured
networks further map each unique resource to a particular node
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in the network which allows the searches to be more efficient
but their lack of flexibility introduces other issues [16]. In
this paper we focus on unstructured peer-to-peer networks and
address two major concerns in these networks: the time to
find a peer who is offering a particular resource (the search
time), and the amount of additional traffic introduced in the
network in the process of locating the peer that is offering
that resource (the search cost). The reference example is of
peer-to-peer file sharing networks1 and we refer to resources
as files throughout the rest of the paper. We approximate the
search time for a file in the network by the average number
of hops it takes for a query to reach a node that has that file,
and use this average search time as our first metric for search
performance. Our second metric is the search cost. Since a
search for a file is done via peers sending query messages to
other peers, the number of peers queried equals the additional
traffic introduced in the network by the query. Therefore, we
approximate the search cost by the query-processing load, i.e.,
the average number of query messages per file request. One
expects that if many peers are sharing a file, in any reasonable
search method, the search time and the search cost for the file
will be smaller than if very few peers were sharing that file.
Since each peer has finite storage space, a system designer
seeks to get the optimum search performance possible given
the per-node storage constraint. The optimal average search
time, the optimal query-processing load and the file replica
distribution (number of replicas of each file as a function
of that file’s popularity) at the respective optima have been
derived in [29] under the assumption of a uniform distribution
of the file replicas. However, measurements on deployed peer-
to-peer file sharing networks show clustering in interests [10],
[13], [14] (i.e., the popularity of a set of files varies across
the set of nodes) and more replicas of a file are found in
the regions where the file is more popular [14]. In this paper,
we provide results analogous to those given in [29] for the
clustered demands case.

Thus, the problem addressed in this paper is: given a
particular file popularity distribution, what is the optimum
performance that can be achieved? File popularity distribution
is driven by the user behavior but a system designer can choose
the type of overlay topology that may be constructed, the
search mechanisms on this search overlay and the placement
and the number of replicas of each file in this network. To limit
the scope of the problem we assume that a search for a file

1We would like to emphasize that the problem of search has applications
beyond the currently deployed peer-to-peer file sharing networks over the
Internet and even though we use the term “files,” our results do not depend
on any modeling assumption specific to file sharing networks.
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has no apriori information on which node may have the file,2

and consider the two extremities among the possible search
mechanisms, random walk and flooding. Our overlay topology
model allows for a tunable level of clustering in the topology
and we consider the level of clustering in the topology to
be an important design parameter. Our model allows control
over the placement and the number of replicas of each file by
allowing independent control over the number of replicas of a
file in each topology cluster. In addition to providing analytic
expressions for the optimum performance possible, we also
provide analytic expressions for the optimum system design
in terms of the level of clustering in the topology and the
number of replicas of each file in each cluster in the overlay
topology.

Our analysis assumes that the search overlay and the
distribution of file replicas on this overlay does not change
during a search (i.e. from the time a particular node initiates
a search till that search concludes). Over time, both the
topology and the distribution of file replicas (as well as the
file popularity distribution) can change as peers may join or
leave the network, obtain replicas of files and, possibly, delete
local replicas of other files. However, as long as the overall
statistical properties of the network (i.e. the overlay topology
and the replica distribution) are maintained, our results hold.
Over a longer term, even the file popularities can change and
new files may be introduced. Therefore, an ideal algorithm
will dynamically discover the clustering in file popularity
distributions and adjust overlay topology in response. We do
not provide such algorithms but will briefly mention some of
the proposed algorithms that operate along these lines when
we discuss the related work in Section II. While these algo-
rithms have been shown to improve performance over overlay
topologies that do not exhibit clustering, our characterization
of the nature of the optimal solution will allow researchers
to further tune their algorithms so as to achieve the optimal
performance.

The main contributions of this paper are given in Sec-
tions III–VIII. In Section III, we present a peer-to-peer net-
work model that allows for incorporating clustering in demand
and file replica distribution. The search time for a random walk
search in this network model is derived in Section IV while
Section V derives the analogous results for the flooding search.
In Section VI, we derive the query-processing load expressions
for random walk and flooding searches. The optimal search
time and the optimal search cost expressions for flooding
search are derived in Section VII. In Section VIII we extend
the results for flooding search beyond the specific mode of
demand clustering allowed by our network model described
in Section III to incorporate any arbitrary demand clustering.
Related work is discussed in Section II and our conclusions
are given in Section IX.

II. BACKGROUND AND RELATED WORK

Flooding and random walking are the two extremes among
the generalized search strategies [8] when no information is

2Caching query results at nodes other than the requesting node can reduce
the query-processing load but keeping these pointers accurate beyond one-
hop from the originial source can be a challenge in the highly dynamic
environment [13] in typical peer-to-peer networks.

available about which nodes may have the file. In flooding, the
node that wants the file sends a query to all its neighbors and
they, in turn, forward the query to all their neighbors (except
the one which sent the query) until a copy of the file is found.3

In random walking, the query is sent to one randomly selected
neighbor and if that neighbor does not have the file, it forwards
the query to one of its neighbors (selected randomly) other
than the neighbor that sent it the query until a copy is found.

Unstructured peer-to-peer networks are typically modeled
using random graphs (since the neighbors of a peer are
randomly chosen). We provide simulation results in [29] for
the search time as a function of the number of replicas of a file
for a measured Gnutella2 [9] trace topology and a superpeer
topology (each superpeer has many leaf peers connecting to
it and the superpeers themselves are connected in an Erdos-
Renyi random graph [1] topology) constructed using similar
parameters as the measured trace which indicate that Erdos-
Renyi random graphs are a good choice4 when nodes are
similar in capacities and file interests (i.e. when files and
file popularities are uniformly distributed). Given that file
popularities exhibit clustering in most real-world situations
[10], [13], [14], tuning the underlying overlay topology to
reflect the clustering (e.g. having a search overlay topology
matching the data-sharing graphs of [10]) can improve the
system performance. Our results in Section VIII quantify the
maximum possible improvement but we have not provided
mechanisms to achieve this performance in a dynamic setting.
Discovering nodes with similar interests (e.g. by gossiping or
based on past query responses) followed by structuring the
overlay so as to cluster nodes with similar interests together
(e.g. using interest-based shortcuts or by replacing some of
the existing links with links to nodes with similar interests)
[4], [11], [17], [21], [26] are promising approaches in this
direction. Our overlay topology model of Section III can be
viewed as an Erdos-Renyi random graph with link probability
q to which interest-based shortcuts are added so as to construct
the clusters of nodes with intra-cluster link probability p (we
expect p > q). Some alternative approaches are [2] and [20],
[25] which use a centralized server and the superpeers in
a superpeer-based network, respectively, to find nodes with
similar interests.

In addition to the search mechanisms suggested in afore-
mentioned proposals, hybrid search mechanisms that use edge
criticality (as discussed in [8]) can also provide efficient
searches in these topologies. Search methods that direct query
propagation based on past query responses (e.g. [32]) also
leverage clustering in file popularities even if their overlays do
not have explicit clustering. The proposal in [6] uses guide-
rules to guide searches to nodes with similar interests which
they note as similar to having separate unstructured overlays
for different communities of interest. Finally, even though the

3For example, one way to terminate the flooding search as soon as the file
is found is to sequentially increase the maximum allowed depth of the search
query one hop at a time.

4When node capacities are very skewed, a power-law random graph is a
topology choice which distributes the query-processing load unevenly amoung
the peers but yields faster search methods [3]. These topologies are suited to
the case where the node capacities can take many different values but if
they can take approximately only two values (e.g. 300 kbps and 10 Mbps),
superpeer topologies are more appropriate to obtain faster searches.
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proposal in [18] does not refer to clustering, their approach
can work well when file popularities exhibit clustering since
limited-hop floods would discover the files in the local cluster
and rarely-requested files (e.g. those in the non-local clusters)
would be found via a DHT-based mechanism (i.e. over a struc-
tured network). We note that there are many other approaches
in leveraging clustering in file popularities (such as the work
on semantic overlays [28]) that we cannot mention due to
space limitations. We also emphasize that while our topology
model has small-world features, our search problem does not
map to finding a particular node whose “address” was known,
this having been dealt with in the seminal work on small-
world networks in [12]. Approaches such [15], [19] have built
upon results in [12] to construct networks that use the DHT
abstraction for searches. The DHT abstraction provides one-to-
one mapping from files to nodes in the network and, hence,
finding a file translates to finding the node responsible for
that file. In contrast, our work assumes that multiple peers
may have the desired file (as has been observed for popular
files in deployed systems [14], [18]) and, hence, our search
is not for a particular peer (that has the file) but for any one
of the peers that have the desired file. In fact, one of our
key contributions is the analytical relation that we establish
between the search performance and the number of replicas of
the desired file. While [18] provides expressions for the search
performance as a function of the number of replicas, their
performance metrics were different. Like other hop-limited
flooding (and random walk) search proposals (e.g. [26]), they
are interested in the probability of success in finding matching
files and the number of distinct file sources found within the
maximum number of hops allowed. There are other possible
metrics (e.g. the number of distinct nodes found in a given
limit on the number of messages allowed [8]) as well but the
search time and the search cost that we find are more direct
measures of the performance. References [5], [29] discuss the
relation between the search performance in terms of these
metrics and the number of replicas of the desired file under
the assumption of a uniform distribution of file replicas (which
assumes that all peers have similar interests) and the optimal
search performance under the constraint of finite per-node
storage. Since our work in this paper is similar to that in
[5], [29] (except that we remove the assumption of a uniform
distribution of replicas), we briefly describe the key results
from [5], [29] next.

Reference [5] gives the search time for a file as a function
of number of replicas of the file when the search method
is a random walk. Say there are ni copies of file i in the
network and a total of M nodes in the network. If these ni

copies are uniformly distributed in the network (at most one
copy to a node), a randomly selected node has a probability
ni/M of having the file. Thus, random walking for file i is a
sequence of Bernoulli trials with ni/M as the probability of
success and, hence, the (average) search time for file i, τiR,
and the (average) number of messages5 per search for file
i, QiR, is M/ni. Reference [29] provides analogous results
for flooding before going on to compare flooding and random

5Note that this includes the possibility of already queried nodes being
queried again (if these nodes could be eliminated from subsequent probes, the
probability of finding the file with each new probe would increase as well).

Fig. 1. Search time with uniform distribution (5,000 node network, average
degree 5).

walking and showing the advantage of a controlled flooding
search over a random walk search. It gives the flooding
search time under the uniform distribution assumption to be
τiF (ni) = logd (M/ni) where τiF is the (average) search
time for file i with flooding and d is the average degree (i.e.
the average number of neighbors of each node) of the search
network with ni and M as defined earlier. Since the number
of nodes queried in a hop distance of τ is dτ , the (average)
number of nodes queried per flooding search for file i, QiF ,
is still M/ni. Thus,

τiF (ni) = logd (M/ni) (1)

QiF (ni) = QiR (ni) = τiR (ni) = M/ni (2)

Intuitively one can interpret this result as follows. A search
for file i needs to query M/ni nodes on average to find the
file. Since a random walk queries one additional node per
hop, it takes M/ni rounds to find the file while flooding can
query that many nodes in logd (M/ni) hops because it queries
exponentially more nodes with each additional hop.6 If there
are N unique files in the system, the per-node request rate
for file i is λi, and each node can store K (equal-sized) files,
then, as we show in [29], the search time for flooding averaged
over all requests is minimized when ni ∝ λi and the optimal
average search time, τopt

F , and the query-processing load at
this distribution, Qτopt

F , are given by

τopt
F = −

∑N

i=1

λi

λ
logd

λi

λ
− logd K (3)

Qτopt
F = N/K (4)

where λ =
∑N

i=1 λi. The optimal average search time for
random walk, τopt

R , and the optimal query processing load for

6Since a node does not forward a query twice, the exponential growth
assumption is optimistic (see [8] for growth patterns in Erdos-Renyi random
graphs). Thus, (1) slightly underestimates the actual search time as shown
in Fig. 1. In [29], we provide more simulation plots for the average search
distance for different topologies as well as an analytical proof for (1) when
M → ∞ and ni/M is small. Our work in [29] indicates that (1) is an
approximate expression for the search time which captures the dependence
of search time on the number of replicas very well while underestimating the
search time by a small amount.
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Fig. 2. Two-level clustering example - M = 28 nodes in L = 4 equal-size
clusters; total N = 8 files, files 1, 2 are more popular in cluster A and have
equal lesser popularity in clusters B, C, D and there are n1a, n2a replicas
of files 1 and 2 respectively in cluster A and n1b, n2b replicas of files 1 and
2 respectively in each of the clusters B, C, D; nia > nib and, for searches
for file 1 and 2, cluster A is the high-replica-density cluster and clusters B,
C, D are the low-replica density clusters (as shown in nia, nib labeling, files
3, 4 are more popular in cluster B, files 5, 6 more popular in cluster C, files
7, 8 are more popular in cluster D); topology model: average degree = 3.5,
fraction of links within the cluster = 0.9 (Probability that any given pair of
intra-cluster nodes are connected = p ∼ 0.449, probability that any given
pair of inter-cluster nodes are connected = q ∼ 0.017).

flooding and random walk, Qopt
F and Qopt

R respectively, are
given by

Qopt
F = Qopt

R = τopt
R =

(∑N
i=1

√
λi

)2

λK
(5)

achieved when ni ∝ �λi. In this paper, we seek to obtain
results analogous to (1)–(5) when the file replica distribution
and the demand patterns are not uniform.

We note that [29] and [5] respectively provide distributed
algorithms to achieve the ni ∝ λi and the ni ∝ �λi

replica distributions without any need to measure individual
file request rates λi, the total request rate λ, the per-node
storage size K or the total number of nodes M even though the
proportionality constants for both distributions include these
terms. We believe7 that using techniques similar to those in
[5], [29] along with topology clustering techniques similar to
those in [4], [11], [17], [21], [26] will allow us to achieve
the optimal replica distributions given by the expressions we
provide in Sections VII and VIII without a need for explicitly
measuring individual file request rates, the per-node storage
size or the total number of nodes.8

7Even though our expressions suggest that optimal replica distributions
exist for topologies with arbitrary clustering, allowing tuning of clustering in
the topology allows for more robust distributed replication algorithms. The
expressions for optimal replica distributions provided by Theorems 7 and 8 in
Section VIII are in terms of link probabilities and the probability of finding
the file at different nodes-the former is addressed by [4], [11], [17], [21], [26]
and the latter by [5], [29] (the expressions in Section VII are a special case
of those in Section VIII).

8We note that, if necessary, it is possible to estimate file request rates as
well as the number of nodes (see [23] and [19] respectively for examples of
possible approaches).

III. A PEER-TO-PEER NETWORK MODEL FOR CLUSTERED

DEMANDS

Let us assume that our peer-to-peer network has M nodes
and that these M nodes are clustered in, say, L clusters. For
ease of discussion, we make the following assumptions.9 Each
cluster is of the same size (thus, each cluster has M/L nodes).
There are only two levels of popularity of each file and there
is only one cluster in which a file is more popular. Thus, for
all files i = 1 to N , file i has request rate λia per node in
one cluster and λib per node in each of the remaining L − 1
clusters where λia > λib and Mλi = M

L λia + (L − 1) M
L λib

where λi is the average node request rate for file i across the
entire network. Let us further assume that the ni replicas of
file i are split as nia replicas in the cluster where the file is
more popular and nib replicas in each of the remaining clusters
where nia > nib, ni = nia + (L − 1)nib and nia < M/L.
One may then say that the cluster where file i is more popular
has a higher replica density of file i replicas whereas a cluster
where the file is not as popular has a lower replica density.
Since clustering has already been accounted for, we assume
that within each cluster the files are uniformly distributed over
all the nodes in that cluster.

Since each link is equally likely in the topology generated
by an Erdos-Renyi random graph, we need to define an
alternate topology that allows for clustering. A topology model
that gives us a continuum of topologies with the Erdos-Renyi
random graph at one extreme and the fully disconnected
clusters (i.e. no inter-cluster links) at the other extreme is the
following random graph variant. Assuming L clusters of equal
sizes, the nodes are partitioned into L clusters, the probability
that any given pair of intra-cluster nodes is connected is p,
the probability that any given pair of inter-cluster nodes is
connected is q, and the average per-node degree is d (see
Fig. 2 for an example of such a topology model). Thus, each
node has an average of (M/L)p links to nodes within its
cluster and (M − M/L)q links to nodes outside its cluster.
Hence, the average degree d = (M − M/L)q + (M/L)p and
if one were to hold the average degree constant, defining one
of p or q defines the other. Varying q provides a continuum
of topologies from the completely disjoint clusters (q = 0) to
the Erdos-Renyi random graph (p = q). Notice that a flooding
search in these topologies still expands to d other nodes in
the next hop independent of whether the search process is
at a node in the high-replica-density cluster or a low-replica-
density cluster. Thus, the average number of nodes queried per
search expands exponentially and the dτ expression for the
number of nodes queried given the average search distance of
τ [29] still holds.

We note that, depending on the level of clustering, our topol-
ogy model can be considered as a small-world network. The
intra-cluster link probability p is equivalent to the clustering
coefficient [10] in the small-world topologies.10 If the network
size (i.e. M ) increases and the average per-node degree d
remains the same, p, the clustering coefficient, would have
to decrease unless the number of clusters also increases so

9Section VIII provides the results without these assumptions.
10There are 0.5p(M/L)(M/L−1) links among the nodes in a cluster out

of the 0.5(M/L)(M/L − 1) maximum possible links.
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TABLE I

NOTATION USED

it is not clear if our topology has “heavy” clustering [24].
However, even if p is small, topologies where p >> q are
clearly more clustered than an Erdos-Renyi random graph (see
Fig. 2). A more intuitive metric for the level of clustering
in topology such as ours is the fraction of links within the
cluster, (M/L)(p/d); if there are more links from a node
to other nodes in the same cluster, the topology clearly has
clustering. We also note that unless the replica distribution is
also “clustered” (i.e. different number of replicas in different
clusters), clustering in topology does not change the search
performance averages (see results in Sections IV and V).
Since the relative replica density (the probability of finding
the file) in the different clusters directly affects the search
performance, we define the ratio of replica densities in the
high-replica-density cluster and the low-replica-density clus-
ter,
∑

i (nia/nib), as the measure for the level of clustering in
the replica distribution and name it the replica density skew. In
summary, we say a peer-to-peer network has “heavy” network
clustering when the fraction of links within the cluster is
large and, it has “heavy” demand clustering when the replica
density skew is large (as the demand pattern drives the replica
distribution). A peer-to-peer network has strong clustering

G
P(find)=a

e

1 c

c

1 eB
P(find)=b

NG

e(1 a)

c(1 b)

(1 e)(1 b)NB(1 c)(1 a)

F

(1 c)a+cb (1 e)b+ea

(a)

(b)

1

Fig. 3. Random walk in the modified random graph for the non-uniform file
distribution case.

when both the demand clustering and the network clustering
are large, or one is extremely large and the other is only
moderately large.

Table 1 summarizes the notation used in this paper.

IV. RANDOM WALK SEARCH IN NETWORKS WITH

CLUSTERING

The existence of inter-cluster links implies that a query
can get forwarded to nodes in different clusters where the
probability of a node having the file may be different. Thus,
in our model, when a query is forwarded, the event of interest
is whether it goes to a node in the high-replica-density cluster
or to a node in one of the low-replica-density clusters. Among
the d outgoing links at each node, the probability that a link is
an inter-cluster link is q(M −M/L)/d. Therefore, for a query
at a node in the high-replica-density cluster, the probability of
one query path “escaping” to a low-replica-density cluster is
c = q(M −M/L)/d. In contrast, when the query is at a node
in the low-replica-density cluster, the probability of escaping
to the high-replica-density cluster is e = q(M/L)/d as there
are only M/L nodes that are of interest for this event. For
ease of discussion, throughout the rest of the paper, we refer
to the nodes within the high-replica-density cluster as “good”
nodes, and the nodes in the lower-replica-density clusters as
“bad” nodes.

Fig. 3(a) shows a Markov chain model for the random
walk on our modified random graph with a non-uniform file
distribution prior to finding the file: state G represents the
random walk being at a “good” node and state B represents
the random walk being at a “bad” node. The random walk
transitions between state G and state B until it finds the file.
The probability of finding the file when the system transitions
to state G (i.e. at a good node) is a = niaL/M , and the
probability of finding the file when the system transitions to
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state B (i.e. at a bad node) is b = nibL/M . Since we need to
determine the average number of steps until the file is found
for the random walk search time, we transform our Markov
chain in Fig. 3(a) to that in Fig. 3(b). The state NG denotes the
event that the search visits a good node but does not find the
file and the state NB denotes the event that the search visits
a bad node but does not find the file. State F is an absorbing
state denoting the event that the file is found independent of
whether the previous node is good or bad. Thus, the average
first passage time from state NG to state F is the search time
for a random walk search initiated by a good node, τiRa, and
the average first passage time from state NB to state F is the
search time for a random walk search initiated by a bad node,
τiRa. We solve for these average first passage times using the
results from [7] and, since, for the random walk, the search
time is also the query-processing load, we obtain the following
theorem.

Theorem 1. The (average) search time and the query-
processing load for a random walk search in the clustered
peer-to-peer network defined in Section III is:

τiRa (nia, nib) = QiRa (nia, nib)

=
[
niaL

M
− q (L − 1) (nia − nib)

(nibL/M) (d − Mq) + Mq

]−1

(6)

if the search is initiated at a node in the low-replica-density
cluster, and is

τiRb (nia, nib) = QiRb (nia, nib)

=
[
nibL

M
+

q (nia − nib)
(niaL/M) (d − Mq) + Mq

]−1

(7)

if the search is initiated at a node in the low-replica-density
cluster. �

We notice from (6) and (7) that the search time for a query
initiated by a good node increases if cross-cluster links are
present (i.e. q �= 0) but if a bad node initiated the query, the
search time decreases. As expected, in the uniform distribution
case (nia = nib = ni/L), (6) and (7) revert to (2).

V. FLOODING SEARCH IN NETWORKS WITH CLUSTERING

Unlike the case of no clustering where we found in Sec-
tion II that the flooding search time is the logarithm of the
random walk search time, in networks with clustering the map-
ping between flooding and random walk is not straightforward.
Clustering implies more intra-cluster links than inter-cluster
links i.e. the likelihood of reaching a good node on the next
hop is higher from a good node than it is from a bad node
i.e. P (G|G) > P (G|B) or 1−c > e. Similarly, the likelihood
of reaching a bad node on the next hop is higher from a bad
node than it is from a good node i.e. P (B|B) > P (B|G) or
1−e > c. Thus, searching from a good node, flooding is likely
to see more good nodes than a random walk upon querying

the same number of nodes,11 and searching from a bad node,
flooding is likely to see more bad nodes than a random walk
upon querying the same number of nodes.12 Thus, a flooding
search initiated by a good node is likely to query more good
nodes in logdx steps than a random walk search would in x
steps starting at the same node and a flooding search initiated
by a bad node will query more bad nodes in logdx steps than a
random walk search will in x steps starting at the same node.
Hence,

τiFa (nia, nib) ≤ logd [τiRa (nia, nib)] (8)

τiFb (nia, nib) ≥ logd [τiRb (nia, nib)] (9)

Thus, in networks with clustering, the random walk search
times only provide us with bounds13 on one side for the
flooding search times. These bounds, however, are useful since
getting an exact expression for the average search time is
very difficult (at hop distance > 1, the query could be at
bad nodes as well as good nodes and computing the relative
distribution of these nodes is hard). The best we can do is
to bound the search time on the other side as well. For the
flooding search time for a search initiated at a good node, one
approach to obtain a lower bound is to ignore all the “bad”
possibilities and assume that even after hop distance > 1,
the nodes that are forwarding the queries are all good nodes.
With this assumption, at any hop distance ≥ 1, when a node
queries one of its neighbors, the probability that the file is
found is P (F |NG). In its derivation of (1), [29] shows that
the search time to find file i, when the probability of finding
the file at a node on the next hop is P , is − logd P . Hence,
the search time for a flooding search from a good node is
no better than − logd [P (F |NG)] = logd [(1 − c) a + cb] =
− logd [a − c(a − b)]. Thus,14

τiFa (nia, nib) ≥ logd

[
niaL

M
− q (L − 1) (nia − nib)

d

]
(10)

The upper bound for τiFb, the search time for a flooding
search initiated at a bad node can be similarly found by
ignoring all the “good” possibilities and assuming that even
after hop distance > 1, the nodes forwarding the queries
are all bad nodes. With this assumption, at any hop dis-
tance ≥ 1, when a node queries one of its neighbors, the
probability that the file is found is P (F |NB). Hence, the
search time for a flooding search from a bad node is no

11For example, say, the average degree is 3 and let us compare the average
number of good nodes among the next 3 nodes queried by a good node. It
is easy to see that the average number of good nodes with flooding, 3(1 −
c)3 + 2[3(1 − c)2c] + [3c2(1 − c), is greater than the number with random
walk, 3(1 − c)3 + 2[2ce(1 − c) + c(1 − c)2] + [(1 − c)c(1 − e)e + c2e],
when 1 − c > e.

12We can see this by similar arguments as in Footnote 11.
13The bounds presented in this section are approximate bounds as the

underlying analytical approach (Section II) underestimates the search time
by a small amount (see Fig. 1). Thus, the actual search times should lie
within the given bounds plus a small offset.

14Since the probability of finding the file at hop distance 0 is P (F )
whereas the expression − logd [P (F |NG)] assumes P (F |NG) to be
the probability at all hop distances including 0, a correction factor of
− [1 − P (F )] / [1 − P (F |NG)] is required. Since this correction factor is
negligible when the probability that the querying node itself has the file is
small, we omit this from (10). A similar correction factor applies in the case
of a flooding search from a “bad” node but its magnitude is even smaller and
hence we omit it from (11) as well.
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worse than − logd [P (F |NB)] = − logd [(1 − e) b + ea] =
− logd [b + e (a − b)]. Thus,

τiFb (nia, nib) ≤ logd

[
nibL

M
+

q (nia − nib)
d

]
(11)

Combining (8), (9), (10), and (11), we get the following
theorem:

Theorem 2: The search time for a flooding search in
the clustered peer-to-peer network defined in Section III is
approximately13,14 bounded by

− logd

[
niaL

M
− q (L − 1) (nia − nib)

d

]
≤ τiFa (nia, nib)

≤ − logd

[
niaL

M
− q (L − 1) (nia − nib)

(nibL|M) (d − Mq) + Mq

]
(12)

if the search is initiated at a node in the high-replica-density
cluster, and is approximately13,14 bounded by

− logd

[
nibL

M
+

q (nia − nib)
(niaL|M) (d − Mq) + Mq

]
≤ τiFb (nia, nib)

≤ − logd

[
nibL

M
+

q (nia − nib)
d

]
(13)

if the search is initiated at a node in the low-replica-density
cluster. �

As in the case of random walk search, we see from (12)
and (13) that presence of cross-cluster links (i.e. q �= 0)
increases the search time for a query initiated by a good node
and decreases the search time for a query initiated by a bad
node. Since the lower and upper bounds differ only in the
denominator of the term incorporating the effect of clustering,
the bounds will be tight unless (1 − x) (d − Mq) is large
where x = nibL/M for (12) and x = niaL/M for (13) or, in
other words, when nib or nia are very small or q is small (in
which case (10) and (11) provide a good approximation). We
also see that the bounds become equal in 3 cases: (a) when
q = 0, (b) when nia = nib, and (c) when d−Mq = 0. q = 0
implies the clusters are disjoint. The other two cases have
important implications. When, nia = nib = ni/L (i.e. the
file distribution is uniform) both bounds again become equal
to (1). However, (1) was under the assumption of an Erdos-
Renyi random graph search network whereas our network can
have an arbitrary level of clustering, hence this special case
is a generalization of our previous results. In the d = Mq
case also, the bounds become equal and we revert to (1)
even though our file distribution has clustering but the search
network is an Erdos-Renyi graph as assumed for (1).

In Fig. 4 we compare the bounds in (12) and (13) to
simulation results under varying levels of clustering (i.e.
different fractions of links within the cluster and different
replica density skews). As expected we find that the bounds are
tight under moderate clustering (Fig. 4(a)) and as clustering
becomes stronger (Fig. 4(b), (c)) the bounds start to separate
but the search time gets closer to (10) and (11). Thus, in either
case we have a good estimation of the average search time. We
also note that the search time slightly exceeds the approximate
upper bound as expected.13 Based on the analytical arguments

given earlier (immediately following Theorem 2) and the
simulation results in Fig. 4, we conclude that (10) and (11) are
a reasonable approximation for the flooding search time in the
network model for clustered demands described in Section III.
Therefore, throughout the rest of the paper, we use

τiFa (nia, nib) ∼ − logd

[
niaL

M
− q (L − 1) (nia − nib)

d

]
(14)

τiFb (nia, nib) ∼ − logd

[
nibL

M
+

q (nia − nib)
d

]
(15)

for our analysis. Given that these expressions are reasonable
approximations, we utilize the intuition behind these to extend
our results to unstructured peer-to-peer networks with arbitrary
demand and network topology clustering in Section VIII.

VI. QUERY-PROCESSING LOAD WITH CLUSTERED

DEMANDS

As discussed earlier, for the network model described in
Section III, the query-processing load in the network can be
estimated by dτ when the average search distance is τ . Hence,
using (14) and (15) in Section V, we obtain:

Theorem 3: The query-processing load for a flooding
search in the clustered peer-to-peer network defined in Sec-
tion III is

QiFa (nia, nib) ∼
[
niaL

M
− q (L − 1) (nia − nib)

d

]−1

(16)

for searches initiated in the high-replica-density cluster, and
is

QiFa (nia, nib) ∼
[
niaL

M
− q (L − 1) (nia − nib)

d

]−1

(17)

for searches initiated in a low-replica-density cluster. �
Notice that unlike the uniform distribution case, the query-

processing load for the flooding search and the random walk
search are different now. In fact, observing the inequality signs
in (12) and (13) and noticing that exponentiation is monotonic,
we obtain the following corollary.

Corollary 1: For the clustered peer-to-peer network defined
in Section III, (a) From the high-replica-density cluster, a
flooding search has a lower query-processing load than a
random walk search whereas (b) From a low-replica-density
cluster, a flooding search has a higher query-processing load
than a random walk search i.e. for searches for file i,

QiRa (nia, nib) ≥ QiFa (nia, nib)

QiRb (nia, nib) ≤ QiFb (nia, nib) �

Corollary 1 suggests that, for arbitrary replica distributions,
it may be better to use flooding searches in the high-replica-
density cluster and random walk searches in the low-replica-
density clusters (at the cost of significantly larger search
times for searches from the low-replica-density clusters).
However, if a mixed strategy cannot be used (e.g. because
accurately determining that the file being queried is an un-
popular file may not be trivial), averaged across all requests,
random walk will have a lower query-processing load only
if
∑N

i=1 (λibQiRbQiFb − λiaQiRaQiFa) > 0. Thus, only in
a small number of cases, will random walk have a better
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Fig. 4. Flooding search time simulation vs. bounds (25,000 node network, 5 equal-sized clusters, average degree 5, varying degree of clustering).

query-processing load than flooding but, in all cases, it has
an exponentially higher search time. Therefore, we do not
discuss optimization of the search performance with random
walk searches in our results in the next section. We also note
that this result indicates that the proposal in [18] can be a
good approach when topology has clustering matching the
clustering in demands.

VII. FLOODING SEARCH PERFORMANCE OPTIMIZATION

The average search time for flooding search τF and the
query-processing load for flooding search QF over all file
requests in the entire network may be written as:

τF =
∑N

i=1

[
1
L

λia

λ
τiFa +

(
1 − 1

L

)
λib

λ
τiFb

]
(18)

QF =
∑N

i=1

[
1
L

λia

λ
QiFa +

(
1 − 1

L

)
λib

λ
QiFb

]
(19)

The average search time and the query-processing load will
be smaller if more replicas of each object can be stored but
we are limited by the capacity of each node to store only K
files. Therefore, we wish to allocate the total available storage
so as to minimize the average search time (or, alternately, the
query-processing load). Thus, the optimization is subject to
the constraint that the total number of replicas of all the files
should not exceed the total storage available, i.e.

∑N
i=1 ni ≤

KM . Since ni = nia+(L − 1)nib, the optimization constraint
can be written as∑N

i=1
[nia + (L − 1)nib] ≤ KM (20)

We summarize the constrained optimization results in The-
orems 4 and 5 below.

A. Average Search Time Optimization for Flooding Search

Substituting (14), (15) in (18), the Lagrangian [22] for the
average search time optimization under the constraint in (20)
is

H = −
N∑

i=1

⎡
⎣ 1

L
λia

λ logd

(
niaL
M − q(L−1)(nia−nib)

d

)
+(

1 − 1
L

)
λib

λ logd

(
nibL
M + q(nia−nib)

d

)
⎤
⎦

+ γ

(
N∑

i=1

[nia + (L − 1)nib] − KM

)

Solving for ∂H/∂nia = 0 and ∂H/∂nib = 0, we get

niaL/M − q (L − 1) (nia − nib) /d = kλia (21)

nibL/M + q (nia − nib) /d = kλib (22)

where k is a constant
∑N

i=1 ni = KM . Solving for nia, nib

and k, we get the following theorem.
Theorem 4: The average search time for a flooding search

in the clustered peer-to-peer network defined in Section III is
minimized when

nia = [KM (dλia − Mqλi)] / [λL (d − Mq)] (23)

nib = [KM (dλib − Mqλi)] / [λL (d − Mq)] (24)
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assuming λia and λib are such that 1 ≤ nia ≤ M/L, 1 ≤
nib ≤ M/L∀i, and at this replica distribution,

ni = MKλi/λ (25)

τopt
F = −

N∑
i=1

[
1
L

λia

λ logd

(
λia

λ

)
+
(
1 − 1

L

)
λib

λ logd

(
λib

λ

) ]
− logd K

(26)

Qτopt
F = N/K (27)

i.e. the optimal average search time is independent of q (the
level of clustering in the search network topology) while
the query-processing load when the average search time is
minimized is independent of the skew in file popularity and
the level of clustering in both the search network and the file
popularity. �

B. Query-Processing Load Optimization for Flooding Search

Substituting (16), (17) in (19), the Lagrangian [22] for the
query-processing load optimization under the constraint in
(20) is

H =
N∑

i=1

⎡
⎢⎣ 1

L
λia

λ

[
niaL
M − q(L−1)(nia−nib)

d

]−1

+(
1 − 1

L

)
λib

λ

[
niaL
M + q(nia−nib)

d

]−1

⎤
⎥⎦

+ γ

(
N∑

i=1

[nia + (L − 1)nib] − KM

)

Solving for ∂H/∂nia = 0 and ∂H/∂nib = 0, we get

niaL/M − q (L − 1) (nia − nib) /d = k
√

λia (28)

nibL/M + q (nia − nib) /d = k
√

λib (29)

where k is a constant s.t.
∑N

i=1 ni = KM . Solving for nia,
nib and k, we get the following theorem.

Theorem 5: The query-processing load for a flooding
search in the clustered peer-to-peer network defined in Sec-
tion III is minimized when

nia =
(dL − Mq)

√
λia − Mq (L − 1)

√
λib

L (d − Mq)
N∑

i=1

[√
λia + (L − 1)

√
λib

]KM (30)

nib =
[dL − Mq (L − 1)]

√
λib − Mq

√
λia

L (d − Mq)
N∑

i=1

[√
λia + (L − 1)

√
λib

]KM (31)

assuming λia and λib are such that 1 ≤ nia ≤ M/L,
1 ≤ nib ≤ M/L∀i in these equations, and at this replica
distribution

Qopt
F =

1
K

(
N∑

i=1

[
1
L

√
λia

λ
+
(

1 − 1
L

)√
λib

λ

])2

(32)

i.e. the optimal query-processing load is independent of q
(the level of clustering in the search network topology). The

average search time at the optimal query-processing load is

τopt
F = −1

2

N∑
i=1

[
1
L

λia

λ logd

(
λia

λ

)
+
(
1 − 1

L

)
λib

λ logd

(
λib

λ

) ] (33)

+ logd

(
N∑

i=1

[
1
L

√
λia

λ
+
(

1 − 1
L

)√
λib

λ

])
− logd K �

C. Interpretation of Optimal Search Performance Results

We find it very interesting that the optimal search perfor-
mance is independent of q, the level of clustering in topology
of the search network. This suggests that our bounds may be
the fundamental bounds on the search performance given a
demand distribution. We do note that, in our case, the impact
of clustering in the topology is evidenced in the file replica
distribution needed for the optimal search performance as the
file replica distribution does depend on the clustering in the
topology. For example, when q = 0, i.e. the clusters are
disconnected, and as expected, we get nia ∝ λia, nib ∝ λib

from (23) and (24) for search time optimization and nia ∝
�λia, nib ∝ �λib from (30) and (31) for query-processing
load optimization. We also see that the optimal average search
time expression, which was related to the entropy in the file
request probabilities {λi/λ} in the uniform file distribution
case, changes only in that the entropy expression now includes
the spatial distribution of file requests. In [31], we provide
an information-theoretic argument for this relation between
the minimum search time and the entropy in file request
probabilities. The optimal query-processing load also changes
only in that the expression includes the spatial distribution of
file requests in the clustered demands case. Finally, we note
that (25), the overall replica distribution across the network,
is the same as the proportional replica distribution shown to
be optimal for the search time in the uniform file distribution
case. Thus, minimizing the average search time in the clustered
demands case also results in download time optimality and
fairness in download load distribution [30].

We also note that the l.h.s. in (21), (28), (22), and (29)
is equal to the probability of finding the file over a random
outgoing link from a node in the high-replica-density cluster
and a low-replica-density cluster respectively. Thus, while the
expressions for the optimal replica distribution are complex in
the case of clustered demands, we still have the invariants as
summarized in the following theorem.

Theorem 6: For flooding search in the clustered peer-to-
peer network defined in Section III, we have the following
invariants independent of the level of clustering in demands
and the level of clustering in the search network topology

1) The average search time τ is minimized when πij ∝ λij ,
and

2) The query-processing load Q is minimized when πij ∝
�λij

where πij is the probability of finding file i over a random
outgoing link from a node in cluster j and λij is the per-node
request rate for file i in cluster j. �

To evaluate the potential benefits of clustering in demands
over the uniform distribution case, we plot the interesting
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Fig. 5. Benefit of clustered demands: optimal search time.

part15 of (26) and (32) in Figs. 5 and 6 respectively for a peer-
to-peer network of 100 files with zipf-distributed request rates
and 10 equal-sized clusters. Perfect clustering is defined as the
case when the entire demand for a file is from its own cluster
i.e. λib = 0 and λia = Lλi. Figs. 5 and 6 clearly demonstrate
the potential advantage of clustering. As expected, we see that
with perfect clustering, the optimal average search time τopt

F

decreases by logdL and the optimal query-processing load
Qopt

F decreases by a factor of L, the number of clusters in the
network (this can be directly seen from (1) and (2) since each
search is now over only the M/L nodes within the cluster).

Finally, we note that the penalty over the optimal query-
processing load incurred upon optimizing the average search
time increases in the case of clustered demands. For example,
for the peer-to-peer network shown in Fig. 6, Qτopt

F = 100
independent of the fraction of traffic inside the cluster while
the optimum query-processing load Qopt

F ∼ 50 in the uniform
distribution case but goes down to ∼ 8.5 when 99% of
the file requests are from inside the cluster. In other words,
the additional search cost beyond the minimum possible in
optimizing for search time increases from a factor of ∼ 2 to
a factor of more than 10. On the other hand, the search time
incurred upon optimizing the query-processing load increases
only slightly. For example, for the peer-to-peer network shown
in Fig. 5, the search cost upon optimizing the query-processing
load is approximately double16 that of the optimal search time
in the uniform distribution case and this factor increases to
only 2.3 times when 99% of the traffic is inside the cluster
(in fact, this factor was never more than 2.5 in this network
regardless of the level of clustering). However, depending on

15To eliminate the dependence on d and K , in Figs. 5 and 6, we

plot τ ′
opt = −

NP
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16The penalty over the optimum search time in
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Fig. 6. Benefit of clustered demands: optimal query-processing load.

the application scenario, if the clustering in demands is not
very strong or if the query-processing load is not a big concern
but the search time is critical, one may still optimize the search
time.

VIII. FLOODING SEARCH IN THE GENERAL CASE

In this section, we extend our results on flooding search
performance to peer-to-peer networks that have more complex
demand clustering patterns than allowed by our network model
of Section III. Specifically, while we still assume that each
node has d neighbors, the clusters can be of different sizes
now, a cluster can have more links to one cluster than to
another and the request rate for a file can be different in each
cluster. We define the following notation for our discussion in
this section.

τik : average search time to find file k from node i
Qik: query-processing load incurred in a search for file
k from node i
λik : request rate for file k at node i
qij : probability that a random outgoing link from node
i goes to node j
πik : probability of finding file k over a random outgoing
link from node i
pjk : probability that node j has file k

The network has a number of distinct clusters to which
various nodes belong depending on their demand patterns and
topology. Thus, if node j belongs to, say, cluster j which has
Cj nodes and njk replicas of file k, then pjk = njk/Cj . As
before, we have M nodes and N files in the network. Using
this notation, we obtain the total request rate in the network

Mλ =
∑N

k=1

∑M

i=1
λik (34)

Since each node has a total storage capacity of K files, we
get the storage capacity constraint∑N

k=1
pjk ≤ K (35)

The metrics of interest are

τ =
∑N

k=1

∑M

i=1

λik

Mλ
τik (36)
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and

Q =
∑N

k=1

∑M

i=1

λik

Mλ
Qik (37)

As we noted from our results in Section V, a good approxi-
mation for the search time for file j from node i in a flooding
search is τij ≈ − logd (πij) where πij is the probability of
finding file j over a random outgoing link from node i. Since,

in our case πij =
M∑

j=1

qijpjk we obtain

τij ≈ − logd

M∑
j=1

qijpjk . (38)

Since our search network still expands as dτ in τ hops,
from (34), we obtain

Qik =

⎛
⎝ M∑

j=1

qijpjk

⎞
⎠

−1

(39)

Substituting (38) in (36) and (39) in (37), we obtain

τ = − 1
M

∑N

k=1

∑M

i=1

λik

λ
logd

⎛
⎝ M∑

j=1

qijpjk

⎞
⎠ (40)

Q =
1
M

∑N

k=1

∑M

i=1

λik

λ

⎛
⎝ M∑

j=1

qijpjk

⎞
⎠

−1

(41)

Applying constraint (35), we get the Lagrangian for mini-
mizing the average search distance as

H = −
∑N

k=1

∑M

i=1

λik

Mλ
logd

(∑M

j=1
qijpjk

)

+ γ

(∑N

k=1
pjk − K

)

Solving for ∂H/∂pjk = 0∀j, ∀k, we get

M∑
j=1

qijpjk = Kλik/λ ∀i
..
, ∀k (42)

Substituting (42) in (40) and (41) gives us the following
theorem.

Theorem 7: The average search time for flooding search is
minimized when the probability of finding file i over a random
outgoing link from a node j, πij , is proportional to λij , the
request rate for file i at node j, i.e.

πij ∝ λij

and the minimum average search time is

τopt
F = − 1

M

∑N

k=1

∑M

i=1

λik

λ
logd

λik

λ
− logd K

and the query-processing load when the average search time
is minimized is

Qτopt
F · = N/K

i.e. the optimal average search time is independent of any
clustering in the search network topology and the query-
processing load when the average search time is minimized
is independent of the skew in file popularity and the level of

clustering in both the search network and the file popularity.
�

Instead of minimizing the average search time, let us now
minimize the query-processing load. When we minimize the
query-processing load with constraint (35), the Lagrangian is

H =
∑N

k=1

∑M

i=1

λik

Mλ

(∑M

j=1
qijpjk

)−1

+ γ

(∑N

k=1
pij − K

)

Solving for ∂H/∂pjk = 0∀j, ∀k, we get

M∑
j=1

qijpjk = β′√λik ∀i
..
, ∀k (43)

where β′ = MK/
N∑

k=1

M∑
i=1

√
λik . Substituting (43) in (40) and

(41) gives us the following theorem.
Theorem 8: The query-processing load for flooding search

is minimized when the probability of finding file i over a
random outgoing link from a node j, πij , is proportional to
the square-root of λij , the request rate for file i at node j, i.e.

πij ∝ �λij

and the minimum query-processing load is

Qτopt
F · =

1
K

(
N∑

k=1

M∑
i=1

1
M

√
λik

λ

)2

i.e. the optimal query-processing load is independent of any
clustering in the search network topology. The average search
time at the optimal query-processing load is

τQopt
F = − 1

2M

∑N

k=1

∑M

i=1

λik

λ
logd

λik

λ
− logd K

+ logd

⎛
⎝ N∑

k=1

M∑
i=j

1
M

√
λik

λ

⎞
⎠

�
Thus, we find that the invariants noted in Theorem 6 hold

in the general demand and topology clustering case as well.
Further, the optimal average search time is still related to
the entropy in file request probabilities at each node and the
optimal query-processing load is still related to the square of
the sum of the square-roots of the file request probabilities at
each node.

IX. CONCLUSIONS

In this paper, we investigated the relationship between
the number of replicas of a file in unstructured peer-to-peer
networks and the search time and the search cost for that
file and substantially expanded the existing knowledge on
this topic. First, we provided a simple model to incorporate
clustering in peer-to-peer network models so they better reflect
real networks. For this model, we were able to find an exact
expression for the random walk search time (and, hence, the
search cost) in a peer-to-peer network with clustering. We were
also able to find bounds on the flooding search time in these
networks. Using these bounds, we extended the previously
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known results for flooding search time which assumed a
uniform file distribution and an Erdos-Renyi random graph
to when the file distribution is not uniform but the search
network is an Erdos-Renyi random graph, and when the file
distribution is uniform but the search network has clustering.
We also found that, among these bounds, one side was a
reasonable approximation for the flooding search time in the
clustered demands case. We used this observation to generalize
our search time and query-processing load results for flooding
search to peer-to-peer networks with arbitrary demand and
arbitrary network topology clustering. Using these approx-
imate expressions, we derived expressions for the optimal
search cost and the optimal search time in an unstructured
peer-to-peer network when the demand exhibits clustering.
The previous work on the optimal search performance in
unstructured peer-to-peer networks had assumed uniformity in
the replica and the demand distributions. Our results capture
the search performance gains afforded by the clustering in file
popularities that has been observed in deployed peer-to-peer
networks. Interestingly, we found that the gains in the optimal
search performance afforded by clustering in demand patterns
are independent of whether the search network topology
matches the clustering in file popularity. The clustering in
the search network topology is accounted for in the optimal
replica distribution which does depend on clustering in the
search network topology.
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